1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
#include <atomic>
#include <condition_variable>
#include <functional>
#include <future>
#include <iostream>
#include <mutex>
#include <queue>
#include <thread>
#include <vector>
class ThreadPool {
public:
ThreadPool(int size) : stop_{false} {
for (size_t i = 1; i < size; i++) {
pool_.emplace_back(&ThreadPool::work, this);
}
}
~ThreadPool() {
stop_ = true;
cv_.notify_all();
for (auto& trd : pool_) {
if (trd.joinable()) trd.join();
}
}
template <typename F, typename... Args>
auto addJob(F&& f, Args&&... args) {
using returnType = decltype(f(args...));
auto task_pkg_ptr = std::make_shared<std::packaged_task<returnType()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...));
{
std::lock_guard<std::mutex> lock(tasks_mtx);
tasks_.emplace([task_pkg_ptr] { (*task_pkg_ptr)(); });
}
cv_.notify_one();
return task_pkg_ptr->get_future();
}
private:
void work() {
while (true) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(tasks_mtx);
cv_.wait(lock, [&] { return stop_ || !tasks_.empty(); });
if (stop_) return;
task = std::move(tasks_.front());
tasks_.pop();
lock.unlock();
}
task();
}
}
std::atomic<bool> stop_;
std::vector<std::thread> pool_;
std::mutex tasks_mtx;
std::queue<std::function<void()>> tasks_;
std::condition_variable cv_;
};
int main() {
ThreadPool pool(5);
auto result = pool.addJob([](int x = 3, int y = 5) -> auto { return x + y; });
auto result1 = pool.addJob([](int x = 67, float y = 5.1234) -> auto {
std::this_thread::sleep_for(std::chrono::seconds(5));
return x + y;
});
std::cout << result.get() << std::endl;
std::cout << result1.get() << std::endl;
return 0;
}
|